

#HydroVision

The challenges of local pumped storage hydropower: modelling the equipment of the pumping-turbining cycle to improve the flexibility and efficiency of the plant

> **Dr. Laurent Smati Mr. Vincent Denis Dr. Ariel Waserhole**

Mhylab, Montcherand, Switzerland Mhylab, Montcherand, Switzerland Sun'R Smart Energy, ENSTA, Paris, France

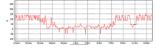
Hydrovision international 2016, Minneapolis, USA

Project background

- PSP¹ is a traditional, efficient and proven energy storage but **most of these plants are large scale plants (>100 MW)**
- With A IRES² and their geographic spread, distributed and smaller PSP (<20 MW) could be an interesting way?</p>
- Small PSP are easier to implement but cannot benefit from the economies of scale
 - ⇒ Finding <u>new</u> sources of income is imperative
 - ⇒ And probably <u>one source will not be sufficient</u>
 - 1: PSP = Pumped Storage Plant
 - ²: IRES = Intermittent Renewable Energy Sources

Copyright St

SunHydrO's project strategies to improve the profitability of small PSP – Part 1


- Using incomes issued from several markets¹ [day-ahead, intraday, balancing mechanism, imbalance settlement and secondary reserve (ancillary services)]
- Optim. **b/w various markets** with price forecasts
- Aggregating IRES prod. and storage assets in a Virtual Power Plant (VPP)
- Optim. VPP profits with weather and price forecasts

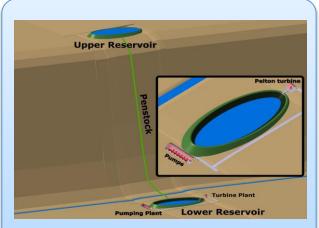
Optim. are performed within an Aggregated Storage Energy Optimizer (ASEO)

¹: highly variable according to the different power exchange area

SunHydrO's project strategies to improve the profitability of small PSP – Part 2

- This strategy requires very **high op. flexibility** of the PSP
- But **flexibility is very expensive** and should not be requested <u>without</u> <u>suitable justifications</u>

⇒ Optim. of the flexibility level of the PSP
during site survey or during the eng. studies of a specific site
Optim. of PSP op. flex. ≈ electro-mechanical equipment

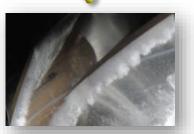

- Operational and plant design optim. are closely linked
 - ⇒ Same tool (ASEO) is used for both but with 2 versions: an operational tool to pilot the storage syst. and a study tool for design optim.

Plant design optimization

- Usually, with a set of rigid and detailed specifications, eng. studies analyze few altn scenarios and use a <u>rather simple economic</u> model to select the best scenario
- Here, specs. are reduced to the min. (to keep deg. of freedom) and the altn scenarios are introduced in the ASEO study tool which takes into account <u>multiple sources of incomes</u>
- Specs. of the EM equipment are adjusted with the results of the ASEO simulation, and a study of new scenarios start again

At the end, the optimum b/w CAPEX and OPEX is found

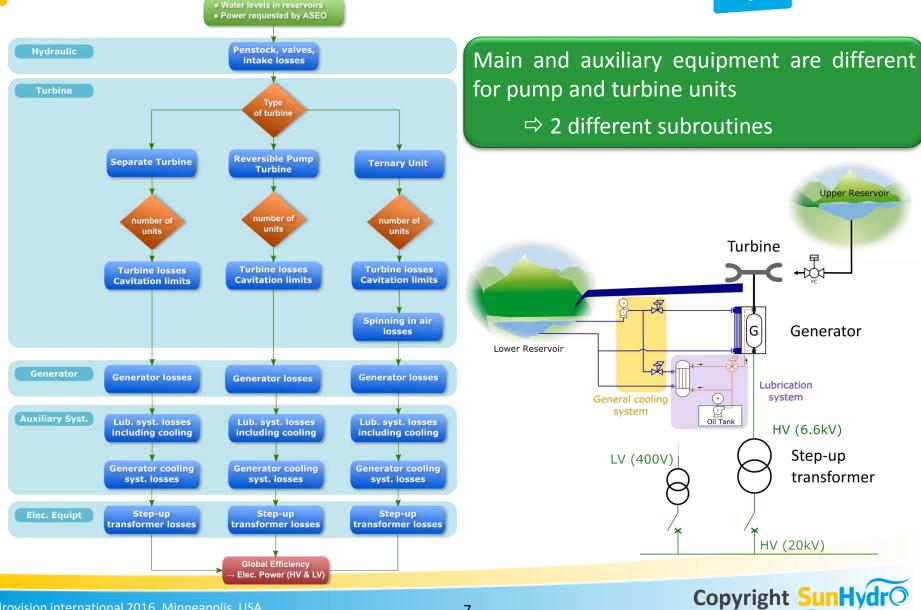
Pumped Storage Plant study under gross head of 770m Plant input/output Electrical Power: 17MW 6 pumps (3MW) & 1 Pelton Turbine (17.7 MW) Location in Alpine Mountain area

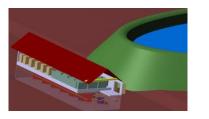


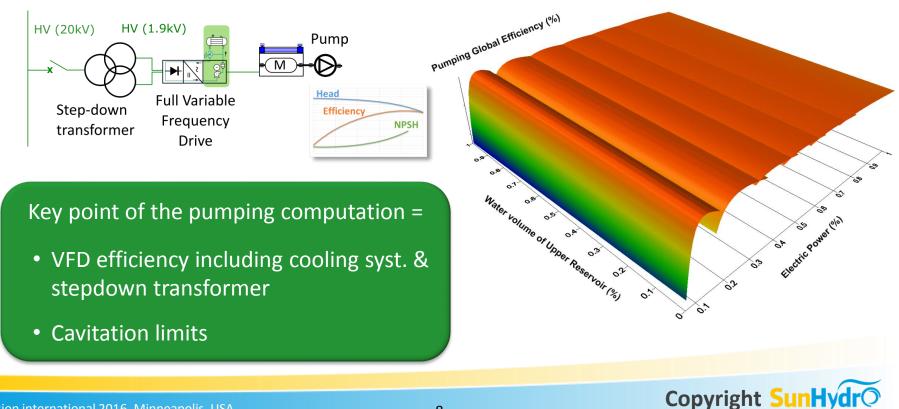
PSP overall efficiency modeling

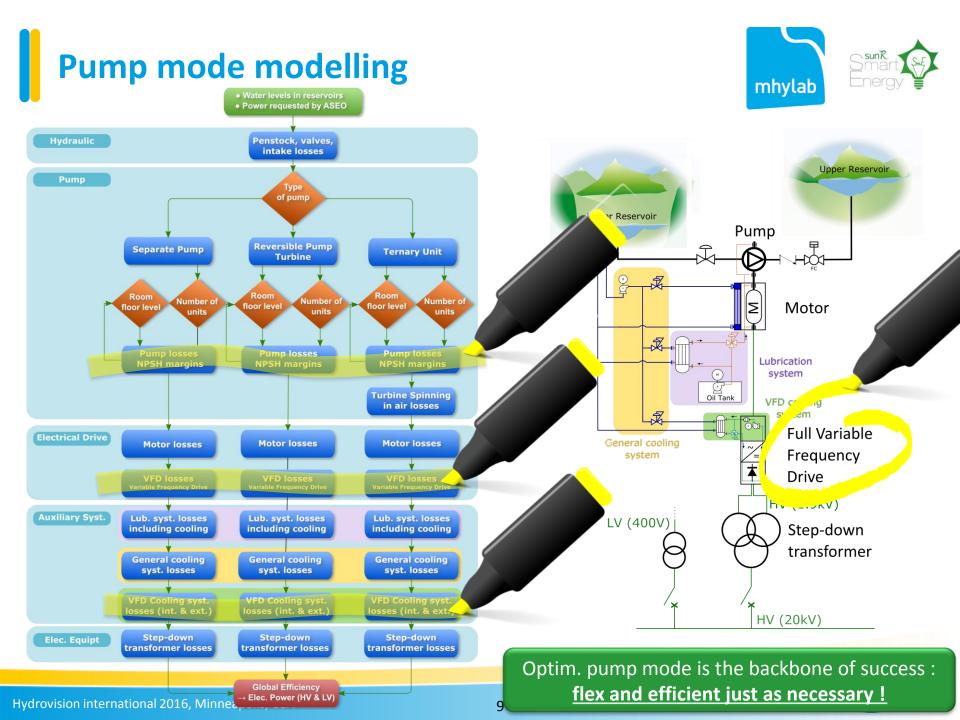
- Several options of types of turbine are possible:
- Cavitation limits affects CAPEX & OPEX (op. range ☆) Best compromise = ASEO computation ⇒ P&T setting depth
- ASEO limits op. period in critical zone if market price is not high enough
- Accurate ASEO optim. requires accurate data of the EM equipment
- Efficiency of one type of equipment can be jeopardized by high losses in **spinning in air losses** or in an auxiliary system, as **cooling**, lubrication

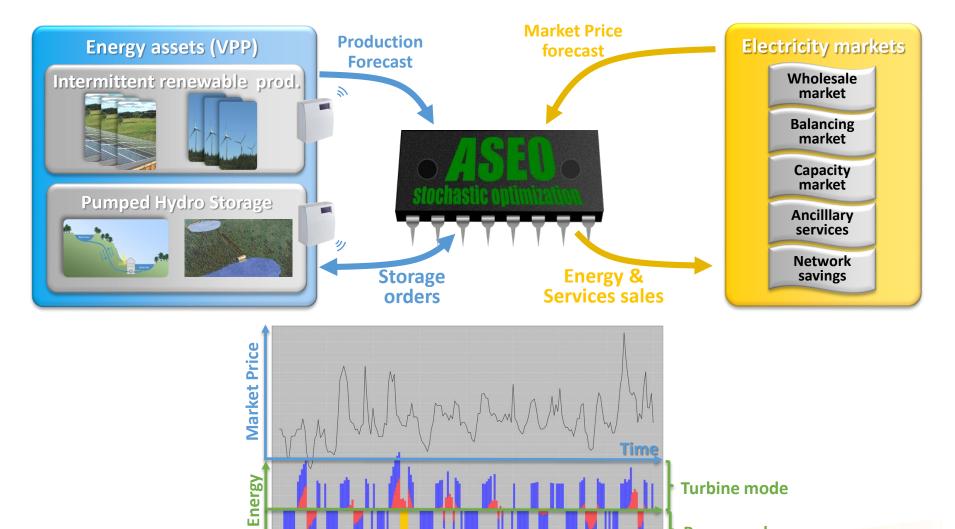
⇒ overall efficiency of the PSP, including all auxiliary systems, is modeled and introduced into the ASEO simulator



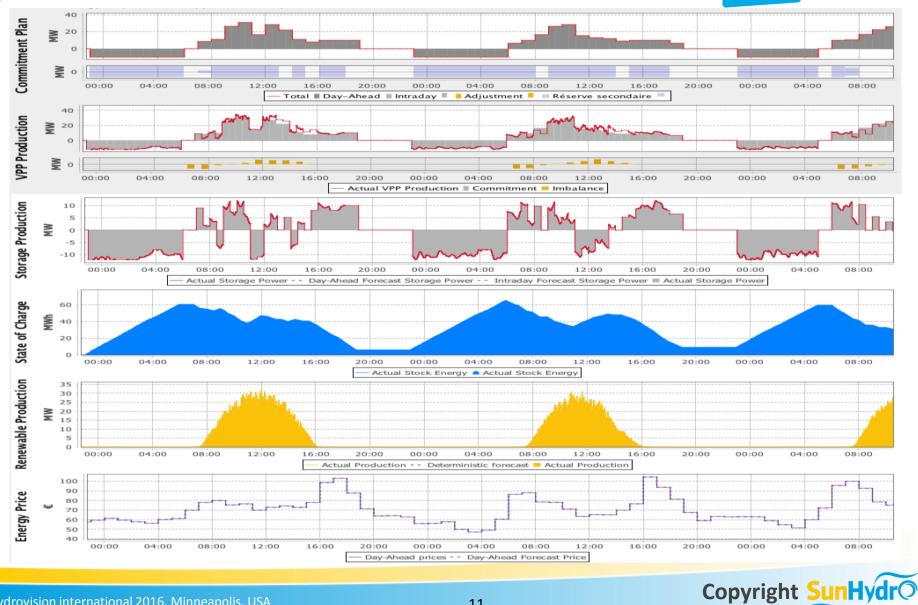

Turbine mode modeling


Hydrovision international 2016, Minneapolis, USA


Pumping overall efficiency


- Ancillary service is a key source of profits and requires high op. flexibility
 - ⇒ Variable Frequency Drives (VFD) are used for speed adjustment
- Unit power of pumps is small ⇒ <u>full</u> medium voltage VFD

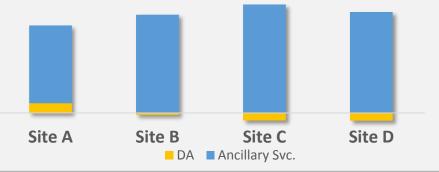
ASEO: Aggregated Storage Energy Optimizer


Turbine mode

Pump mode

ASEO Software Dashboard

Hydrovision international 2016, Minneapolis, USA


	Site A	Site B	Site C	Site D
Plant Power (MW)	12	12	12	12
Static Head (m)	155	400	770	860
Nber of pumps	2	4	4	5
Min. Cont. Op. Range (MW)	6	7.7	8.5	7.9

- High head is beneficial (CAPEX ≤)
- Flexibility improve annual income but could also <a>Cost
- When it is necessary ASEO S Efficiency to A profits
- Site A = Eliminated
- Best site = Site C (next Site B)

PSP annual revenue optimized with ASEO

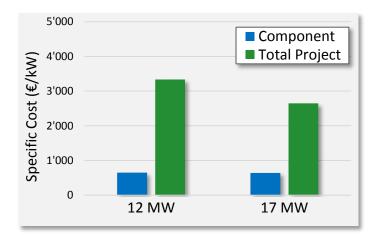
Hydrovision international 2016, Minneapolis, USA

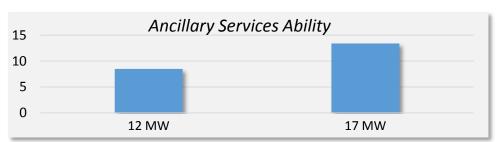
Pump-turbine technology?

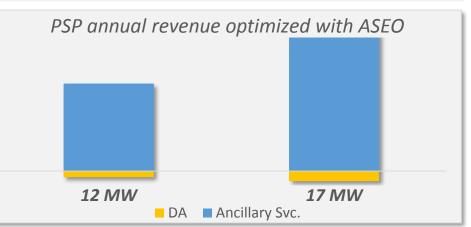
Site A : Gross head = 155m & Plant Electrical Power = 12MW

- Reversible turbine : Anc. Svc. too low
- Using multistage pumps & double eye impeller ⇒ increase operating range
- Ternary group less efficient (spinning in air losses) but less expensive
 - ⇒ increase Day Ahead
 - \Rightarrow increase Ancillary Svc.

⇒ Separated Pump and Turbine




Improve flexibility and profitability

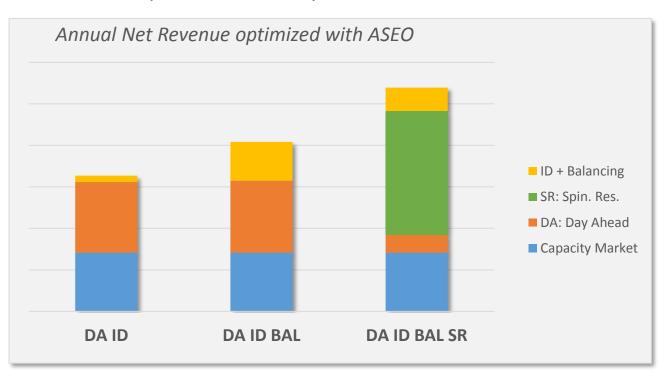


PSP flexibility is a key point of profits

Site C	Site C
770	770
12 MW	17 MW
4	6
8.5	13.4
	770 12 MW 4

Copyright SunH

Increase number of pumps \Rightarrow operating range \nearrow


- Project Specific Cost 🖄
- Income 🖓

Use and Optimize all possible sources of revenues

• Price forecast ⇒ ASEO operational tool optimize revenues b/w different markets

mhylab

Copyright S

- Spin. Reserve is the key source of revenue
- Optim. all mechanisms improves a little more ANR : Decisive for small PSP

Reduce risks of energy market development

Copyright Sun

• Analysis of the influence of three scenarios of market development on Annual Net Revenue:

Pessimistic Average Optimistic	Optimistic	
Scenario Scenario Scenario	Scenario	

⇒ Consolidate PSP characteristics (especially Level of flexibility)

Conclusions Improvement of small PSP viability

- Without the benefit of the economies of scale, optim. of energy mix and ancillary svc. is essential to max. revenue of a small PSP
- ∃ large nber of cycle scenarios ⇒ **Stochastic optim. methods of ASEO**
- Arbitration b/w various energy and ancillary svc. requires an accurate and realistic model of the P&T global cycle efficiency
- ASEO :
 - ⇒ Optim. the annual net revenue
 - ⇒ Optim. PSP characs. (specs. of EM equipment)
 - ⇒ Improvement of the viability of projects, and a risk reduction (current context = quick changes of the energy market)
- ASEO can also used during site survey (major role in project viability)

THANK YOU FOR YOUR ATTENTION!

Dr. Laurent Smati

Mr. Vincent Denis

Dr. Ariel Waserhole

Mhylab, Montcherand, Switzerland

Mhylab, Montcherand, Switzerland

Sun'R Smart Energy, ENSTA, Paris, France

To know more :

info@mhylab.com www.mhylab.com contact@sunr-sme.fr www.sunr-sme.fr

